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J. Phys.: Condens. Matter 6 (1994) 7505-7519. Printed in the UK 

The resonating-valence-bond state; the singlet ground state 

I V Abarenkovtg 
t Cavendish Laboratory, Madingley Road, Cambridge CB3 Om, UK 

Abstraet The resonating-valence-bond (m) state with one localized state per site is a state in 
which correlations are imponant and therefore for its determination it is necessary to go beyond 
the one-dete-ant approximation. Although the number of oneelectron space orbitals is equal 
to the number of electmns, N, the number of necessary determinants in- factonally with 
N, thus making a rigorous treabnenl of the correlation effects impracticable even for systems 
containing relatively small number of electmns. On the other hand by introducing a many- 
electron spin function a coupled system of equations for oneelectmn localized non-orthogonal 
space orbitals and Nelectron spin function can be obtained which on be solved in practice. In 
this procedure the main difficully resides in the equation for the Nelectron spin function. In this 
paper it is shown that a permrbation theory based on the decomposition of the spin system into 
clustea, when taken beyond the ruSr order can, in general, offer a suitable method of mapping 
the results of numerical calculations of spin clusters onto the total system. 

1. Introduction 

The resonating-valencebond state (RVB) with one localized state per site is often found in 
chemical systems and in solids. ' b o  examples are the state of homogeneous electron gas 
in the lowdensity regime (Wigner crystal) 11, 21, and the state of Si(ll1) surface with 
dangling bonds. The electronic state of the C u 4  planes in the HTC superconductors is also 
essentially the RVEI state 131. 

With a good localization, an electronic system with one localized state per site is in 
fact a system with open shells, the number of these being equal to the number of electrons. 
As such systems are out of the scope of the conventional one-determinant Hartree-Fock 
method, it is evident that the actual wave function should be a superposition of many 
Slater determinants. Applying the valencebond version of the spin-extended Hartree-Fock 
method, one encounters the problem that the number of required determinants increases 
factorially with the number of electrons. 

An altemative approach which avoids the explicit expansion of the wave function into 
the series of determinants, is based on an N-electron spin function. For this as well as for 
the required one-electron space functions, a coupled system of equations can be derived. In 
the case of orthogonal oneelectron space functions this can be done exactly and easily. 
Unfortunately, contrary to the one-determinant b e e - F o c k  method, the orthogonality 
conditions become essential constrains in the valence-bond method and they usually give rise 
to poor result. To obtain reasonably good quantitative results the orthogonality conditions 
should he lifted. In this case the said coupled system of equations can be obtained 
approximately with, in principle, any desired precision. In this approach the complexity of 
the problem is mostly transferred to the problem of solving the equation for the N-electron 
spin function. For a comparatively small number of electrons the equation for spin function 
can be easily solved with the help of standard numerical techniques. For large systems 
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we propose to consider small subsystems numerically and afterwards map the obtained 
solutions, in the way to be described below, onto that of the whole system. 

In the present paper the perturbation theory based on the decomposition the spin system 
into clusters is considered as the method of mapping. It is shown that, when taken beyond 
the first order, the perturbation theory can indeed offer a fruitful method of mapping the 
results of cluster calculations onto the solution for the whole system. 

2. The coupled system of equations 

We consider the ground state of N-electron system in the external potential V ( r ) .  The wave 
function of this state, Y, is the solution of the Schrodinger equation 

x Y ( x l ,  .. . , XN) = E\V(xl,. . . ,xN) A 

(2.1) 

with (we employ the Hartree atomic units throughout) 

(2.4) 

Here Xk stands for the space, Tk, and spin, Uk, variables of the kth electron. The potential 
V(T)  is the sum 

of the potentials Q(T) centred at sites Rj. No special symmetry of the sites or similarity 
of the potentials Q(T) is supposed. We assume N to be even and the ground state of the 
system to be a singlet state. 

To take account of the correlation effects, we employ the valence-bond (VEI) version [4] 
of the spin-extended Hartree-Fock method for the solution of (2.1). For this let 

('?k(T), = 1,2, .  . . y  N) (2.6) 

be the set of N space orbitals. These orbitals are normalized, i.e. 

/ I'?dT)I*dT = 1 (2.7) 

but they are not necessarily orthogonal and the overlap integral of the orbitals @k and & 
we denote by Sk.8, 
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The N-electron space function is taken as a product of the one-electron functions $i 

@(rl*TZ- ....TN) ~I(TI)~Z(TZ)..'~N(TN) (2.9) 

To make the N-electron spin function let us bind the electrons in pairs. For this one should 
first group all sites in pairs {i. j ] ,  so that every site belongs to one and only one pair. The 
grouping defines a particular bonding scheme, the number of different bonding schemes for 
N electrons being equal to ( N  - l)!!. To distinguish different bonding schemes we will 
use the index g. Next, one should couple the electrons in each pair with the two-electron 
singlet spin function 

1 
X(ui, uj) = - { d U i ) B ( u j )  - B(~i.b(oi.)l (2.10) 

z/z 
Thefunction , 

(2.1 1) 

in which the product is over all pairs in the gth bond scheme, is the N-electron singlet spin 
function. The function 

1 
yg(x1, ....XN) = - x E ( P ) h ( ' r l . . . . ,  T,V)@g(uI, ..., UN) (2.12) m p  

in which @ is a permutation operator, with E ( P )  the signature of P, and the summation 
is over all possible permutations, is an antisymmetric N-electron singlet function 
corresponding to a particular bonding scheme g. The functions 0, and Y, are normalized 
to unity, but the functions 0, and 0,. (and Y, and Yf) corresponding to different bonding 
schemes g and g' are in general not orthogonal. Moreover only N!/(N/Z)!(N/2+ l)! of 
spin functions (2.1 1) are linearly independent 151. There exist a powerful method to select 
the linearly independent spin functions called Rumer's diagram technique [4]. Employing 
linearly independent spin functions in (2.12) one can look for the (approximate) solution of 
equation (2.1) as the linear combination of Y, 

~. 
*(Xl,...,XN) = c c g I I $ ( x l ,  ..., XN). (2.13) 

8 

From the Schdinger equation (2.1) for Y, one obtains a system of algebraic equations 
for the coefficients C,. Equation (2.13) corresponds to mixing different bonding schemes 
(hence the name-'resonating valence bonds'). The problem that arises in this way is that 
the number of basis functions V, increases with the increasing number of electrons so 
quickly that calculations become impractical even for a moderate number of electrons. A 
way out of this problem could be to select the most important basis functions and to neglect 
all others. There are few exceptional cases where one coefficient C, is much bigger than 
all others so that only one particular bonding scheme can be left in equation (2.13) without 
loss of much accuracy. These are the so-called 'perfect pairing' cases. Usually, many 
coefficients are of the same order of magnitude and therefore should be left in (2.13). In 
most problems it is impossible to know the essential coefficients c k  a priori. 
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At the same time, the linear combination in (2.13) is in fact a linear combination of 
spin functions only, as the spatial part is the same. This linear combination 

@(%, 0 2 , .  ... UN) =~c c, 0 ,C~l .  0 2 . .  . .. UN) (2.14) 
s 

with arbitrary coefficients C, is the general singlet spin function of N-electron system. We 
write, therefore, the wavefunction of the system as 

(2.15) 
1 

q ( x l , .  . . , xn )  = - - C E ( P ) h ( T 1 , .  . . .TN)@(UI . .  . . ,UN)  m p  
and instead of deriving the system of linear equations for C, we derive the equation for 
the N-electron spin function C3(u1, uz, . . . ,UN).  To this end it is expedient to employ the 
variational principle and to look for the minimum of the energy functional . 

w = ( Y l H l Y ) / ( Y l Y ) .  (2.16) 

As the orbitals &(r) are not orthogonal, the matrix elements in both the numerator and the 
denominator of equation (2.16) contain (due to the non-linked clusters) terms which scale 
as NZ, N3 etc with increasing N. Therefore direct use of equation (2.16) is impractical 
even for moderate values of N. To cancel all ambiguous O(Nz), O(N3) ,  etc., terms one 
can use the technique developed in [2]. 

Using the approximation4 the second order in the exchange parameter-introduced in 
[2] (see equation (23) in [2]) we anive at the following expression for the energy functional 

The first two terms in this expression comprise the HaNee energy of the system. The last 
term is the exchange-correlation energy in the adopted approximation. In this term Gi,j is 
the diagonal matrix element of the operator for the transposition of spin variables 

Gi.j = ( @ l ? j , j l @ ) ,  (2.18) 

and Ki,j is a combination of molecular integrals, which can be written in the following 
form 

Ki.j = -( i, j lgl j ,  i )  - Sj.j Hj.; ( I  fi - qy) sj,; 

+ ~ i , j  ~ j , ;  (H?) + H!;” + ( i ,  j Igl i, j )) 
(2.19) 

with 

The latter is the Hamiltonian of an electron moving in the direct potentials & and 
sites i and j and the screened potential of all other sites. 

of 
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Applying the variational principle to (2.17), we immediately obtain a system of coupled 

-~ 

equations for the one-electron space orbitals +i and the N-elecmn spin function 8, 

(2.21) 

(2.22) 

In these equations 1; and A are Lagrange multipliers for satisfying the normalisation 
conditions, respectively, for the one-electron space functions qk and the N-electron spin 
function 0. 

Equations (8) are written in a form ready for self-consistent solution. For this we pmceed 
as follows. First we assume an initial approximation {@)) for the spatial functions. From 
this we calculate Kz! through equation (2.19), and insert the obtained values into (2.22). 
from which do) is ob&ed. Subsequently we calculate Gj: from (2.18) so that through 
solving equations (2.21) the new approximation (4:)) is obtained. The same process, as 
for (4:')) , is continued with 16;)) and the subsequent functions (q5p)) until convergence is 
achieved. In this process the equations (2.21) for the set of functions {&} can be solved with 
the help of the well-developed techniques of quantum-chemistry, which are mainly based 
upon the expanding @i into an appropriate basis set and solving for the expansion coefficients 
from the resulting (non-linear) algebraic equations. In choosing the basis functions it should 
be taken into account that (&) are well localized functions. 

In spite of its simple form, equation (2.22) for the spin function is, in general, more 
difficult to solve than equations (2.21). Because of the relation 

4(&, ij) = 2 Fi., - i (2.23) 

which is valid for spin-l/2 particles, equation (2.22) is in fact the well known Heisenberg 
equation. Exact solutions (such as one based on the Bethe ansad [6, 71) exist only for 
few simple cases. Numerical solutions (see, for example [8-10]) are obtainable only for 
comparatively small systems. 

Table 1. The total energy of chain, W(c),  ring, W@l, and their diffexnce as a function 
of the number of sites N, togetha with the energy per site of chain, w@), and ring, wm;  
(w, = -0.3863). 

N W(" W" w<c) - WM ,(Cl wu"l 

4 -1.7320 -2.0000 0.2680 -0.4330 -0.5000 
6 -2.4872 -2.6056 0.1184 -0.4867 -0.4343 
8 -3.2499 -3.3024 0.0525 -0,4062 -0.4128 
10 -4.0161 -4.0309 0.0148 -0.4016 -0.4031 
12 -4.7841 -4.7748 -0.0092 -0.3987 -0.3979 
14 -5.5533 -5.5271 -0.0262 -0.3967 -0.3948 
16 -6.3236 -6.2846 -0.0392 -0.3952 -0.3928 
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In table 1 we present some results corresponding to a number of linear chains and rings 
with even number of sites, for which only the nearest-neighbours interaction was assumed; 

1 
0 otherwise. 

if i, j are. the nearest neighbours 
K . .  - { LJ - 

In this table d c )  and dr) stand for the energy per bond in, respectively, an open chain and 
a closed ring. In both cases the energy per bond is negative; therefore one would intuitively 
expect that breaking the bond will always result in increasing the energy of the system. 
For N < 10 the results are as expected; surprisingly, for N > 10 the energy of the chain 
t u m s  out to be lower than the energy of the ring. This can be interpreted in terms of the 
‘surface’ energy which change sign with increasing number of spins. The described result 
suggests possible clusterisation of long chains. More peculiar result is that sum of energies 
of two rings with N sites is lower than the energy of one ring with 2N sites by the amount 
that is comparable with the absolute value of the energy per bond. In this case there is 
no ‘surface’, and the number of bonds is the same. This result indicates that the possible 
clusterisation can have a rather complicated structure. 

The numerical calculations are practical for smaIl spin systems (up to approximately 
20 spins) as the demand for computing resources grows factorially with the number of 
spins involved. The quantum Monte Carlo method has been successfuIly applied 1111 to 
this problem with larger number of spins, but still it is not an inexpensive method. The 
coupled-cluster method has also been used recently for s = 1/2 quantum antiferromagnets 
[12]. Still for the self-consistent solution of system of equations (8a), (8b) a simpler method 
that can handle much larger systems is needed, especially for those without symmetry. 

The perturbation-theory approach, to be presented below, turns out to be a simple and 
efficient enough method of solving equation (2.22) for large systems. 

3. The perturbation-theory approach 

To apply the perturbation theory in solving equation (2.22) we consider a finite system of 
spins. The Hamiltonian corresponding to (2.22) is 

in which, owing to the good localization of #;, the constants K ~ J  decrease rapidly with 
increasing distance between sites so that for practically interesting systems, the sum in (3.1) 
is over the first, the second, and possibly the third neighbours. The signs of the parameters 
4 . 1  are assumed such that the system corresponds to a quantum antifenomagnet. Now 
considering the spin system as an array of interacting clusters, each cluster a having an 
even number No = 2M. of spins. The decomposition of the Hamiltonian is straightforward 

Here 

(3.3) 
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is the Hamiltonian of the cluster a,  and 

(3.4) 

is the interaction between clusters a and b. Looking for the ground state of the system 

&eg = E g o g  (3.5) 

we take 

as unperturijed operator, and 

P = 2 a . b  
o<b 

(3.7) 

as the perturbation. We denote the eigenfunctions and the corresponding eigenvalues of &O 

&@k = E k @ k  (3.8) 

with @O and 6 being the wave function and the energy of the ground state of the unperturbed 
operator. The assumption that the number of spins in every cluster is even has been made 
to ensure that the ground state of the unpeaurbed system is non-degenerate. In the case of 
clusters with an odd number of spins, a different technique than presented here should be 
used. We employ the intermediate normalization condition 

by @k and &k, respectively 

(@01@g) = 1 (3.9) 

and the perturbation equations 

(3.10) 

in which the projection operator Q projects out the state 4. Applying ? + K P in 
the above equations, expanding the results in powers of K ,  and setting K = 1 in the final 
equations we anive at 

in which 

(3.11) 

(3.12) 
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In general, for any p r o m  k the following result can be obtained in the same manner 

(3.13) 

(3.14) 

the coefficients d,,, are obtained through the recurrent relation 
m e 

d, = - dm-i E(@(") I @('-") ) & = I .  (3.15) 

The convergence of the series (3.1 1) and (3.12) can be either a true convergence (numerical 
results in some cases point to it), or an asymptotic one (when the deviation from the 
exact value of the value calculated up to some order becomes smaller and smaller with 
increasing the sue of the clusters and correspondingly reducing the relative strength of the 
perturbation). 

To employ perturbation theory we express the Green's function 60 of the unpemrbed 
Hamiltonian in terms of projectors on the eigenstates of the unperturbed operator as follows 

L=I "dl 

(3.16) 

The eigenstates of & are the products of clusters eigenstates, and eigenvalues of 
sums of the clusters eigenvalues 

are 

(3.17) 

The Hamiltonian ri. of a cluster commutes with the operators for the square of the total 
spin of the cluster 

(3.18) 

and its z-projection $,,. Hence, the eigenstates of 
of 2." and i.e. 

can be the simultaneous eigenstates 

- 
Ha @a,n,j,m = e0.n.j @a.n,j.m 

F@,, j . , , ,  = jLi + 1) ~ ~ , ~ , j , , , ,  
A 

sa,z @a,n.j.m m @a.n,jm 

rt = 0,1,2, ... 
where 

j = 0.1, . . . , Ma m = -  j ,  . . . . j .  (3.19) 
The clusters' eigenfunctions are assumed to be normalized to unity and orthogonal within 
a given cluster 

(%,j,m I@n.n,.j,.m,) = &+,6j,j ,&n,m,. (3.20) 
The perturbation theory is especially suitable for the singlet state, which is believed 

to be the RVB ground state. In the case of the singlet state many matrix elements of the 
perturbation occur to be zero due to the symmetry of the spin systems as will be shown in 
the next section. 
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4. The matrix elements 

The perturbation operator is the linear combination of transposition operators I&, with 
L E a, e' E b, so let us consider a matrix element of this operator between two eigenstates 
Qk and @ p  of the unperturbed Hamiltonian (see (3.17)). These states are products of the 
wave functions of isolated clusters. Because of (3.20) this matrix element will be different 
from zero only if 

k , = k ' ,  c # a , b  

and when this condition is fulfilled we have 

(@k I &.C 1 @k") = (@n.nl.jl.ml @b.nZjZ,mZ I &,tr I @ a , n l ~ , j l ~ . m V  @b,n2r.jZr.mZ,). (4.1) 

To calculate this matrix element we decompose each wave function of an isolated cluster 
as follows 

(0 
@g,n. j ,m(Ul, .  . ., UN<) = Fg,n , j ,m ,m(Ul , .  . . , U t - l , o p + l . .  .. , U N # ) ( Y ( U ~  

+ F:;.j,m,B(ul.. . .. Q - l . U t + l .  .. . , u&?JB(nd (4.2) 

(4.3) 
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From (4.5) it follows that 

The matrix element (4.1) has the simplest form if both states of clusters a and b in 
@k (or @V ) are singlet states. This is due to the fact that in the case of the singlet state 
equation (4.5) reads 

F e )  fixg,n,O,O;f,f(ul' 1 (e) . . . ~ u l . - l ~ ~ t + I ~  . . . , O N 8 ) .  g.n.o.o,p(ul > . . . Y  ut-1. uf+l. . . . I ON,) = -- 

(4.8) 

From equation (4.7) it follows that 

Vg.n,O.o.u I Fg.n'.o.o.~) = 0. (4.9) 

Moreover, there is a simple relation between F g . n , ~ , ~ , .  and F,,.,,o,o,p. To find this relation, 
consider the operation ? which changes the direction of the z axes to the opposite. Under 
this operation a(u) changes to p(a) and p(u) to @(U). The spin function O g S , ~ , ~  of the 
cluster under this operation will either change sign or will remain unchanged, depending on 
the parity of Mg,  

?@n.o.o(Gl.. . . . UN.) = ( -~)Mg@n,o.o(U~, ... ,UN*) (4.10) 

This follows, for example, from the fact that the singlet function O,,.,o,o can be expressed 
as a linear combination of valence-bond structures, each valencebond structure being a 
product of Mg two-electron singlet spin functions x ( q ,  uz). The latter changes sign under 
the operation ?, hence (4.10). Applying ? to both sides of equation (4.3) and making use 
of (4.10) one immediately obtains 

Consequently the orthogonality condition 

will read 

(4.11) 

(4.12) 

(4.13) 
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Combining equations (4.4). (4.8). and (4.13) we obtain 

(%,nl.jl,ml @b.n2,jZ,m2 1 Pt,t< I @o.n1',0,0 @b,n2'.0.0) 
1 - - 5 S " l . . l , s j l , ~ S m l , ~ $ ~ . n ~  z j 2 o h . o  

(e) (e) (er) + 2(Fn.nl,jl.mlr I Fa,nl'.O.O.a) (F%j2.m2u I Fb.nZ,,O,O.u) 

X 8j1,18j2,1 Sm1,0&2.0 -&1.lSmz.-l - B1.-18m2,1 . (4.15) 

Among other things, this result shows that if only singlet states of isolated clusters are 
taken into account in the perturbation themy, then the matrix of the perturbation operator will 
be automatically diagonal and every state of the unperturbed system wiU be simultaneously 
an eigenstate of the perturbed system. Hence in order to make the perturbation theory 
effective it is necessary to employ the states of isolated clusters with higher multiplicity. 
As the perturbation is a linear function of the transposition operators, the second- (and also 
the thiid-) order correction is due to the states in which only two interacting clusters are 
excited into triplet states; these excited states are coupled such as to make the total state a 
singlet one. The fourth-order correction is due to the states in which two, three, and four 
clusters are excited, and so on. This makes application of the perturbation theory to the 
singlet state exceptionally simple. 

( 1 

5. Comparison with variational approach 

In the previous section we have shown that the first-order correction to the spin function is 
due to states in which only two clusters are excited. Therefore it seems appropriate to employ 
these states in the variational approach in order to improve the ground-state wavefunction. 
Unfortunately this procedure results in an incorrect dependence of the energy of the system 
upon the number of sites. To show this explicitly, let us consider a one-dimensional chain, 
taking into account the nearest-neighbours interaction (2.24) only. We impose periodic 
boundary condition, and assume all the clusters comprising the chain to be identical. Let 
the number of sites in each cluster be even, np = 2mp, and the number of clusters be 
M .  We take into account only those excited states of the unperturbed chain in which two 
neighbouring clusters p and p + 1 are excited to their first excited states, triplet state, and 
coupled to make a singlet state of the chain. These excited states of the chain we denote by 
@ p  P = 1, . . . , M .  These states Qp are both orthogonal to each other and to the state @o. 
Note that both unperturbed and perturhed systems are translationally invariant Therefore 
the normalized to unity correction to the wavefunction @O should be 

and the spin function should have the form 

E, = c1 Qo + c 2 x .  (5.2) 

The diagonal matrix elements of the Hamiltonian with respect to @o and x are 

~ 0 1 f i 1 ~ 0 )  = EO = M(eo  + 4) 
( x l f i l x )  = Eo+2A.  (5.3) 
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The excitation energy 2A = 2Ao +-A, consists of A0 e, - eo, the excitation energy 
of a single cluster, and AI = (QplHp.p+~lQp) - ( @ O I H ~ , ~ + I ~ O ) ,  the difference of the 
interaction energy in the excited and the ground states. Note that A1 does not depend on p 
and neither A0 nor A1 depend on M .  

The non-diagonal matrix element is 

(5.4) 

The quantity Q = (QoI810,) = ( @ O I J ? ~ , ~ + ~ ~ Q ~ )  does not depend on neither p nor M .  
Straightforward calculations give the following result for the ground state 

E = E ~  + A - d- 

Let us now keep the number of sites itp in the cluster constant, so that A will also be constant, 
while increasing the number of sites N in the chain through increasing the number of clusters 
M .  From equation (5.5) it can be seen that the energy of the chain will be decreasing, and 
it will be decreasing as a; the coefficients C1 and CZ will tend to 4 and -4, respectively. 
At the same time in the system with short-range interaction the energy at large N should 
be proportional to N ,  and the calculations on finite spin systems clearly indicate thii. 

In the perturbation-theory approach in every order only terms proportional to N survive, 
all other contributions proportional to NZ, N 3 ,  etc., due to the disconnected diagrams, cancel. 
For the above-considered chain the zero-order energy is M x eo, the first-order correction 
is M x i, and the second-order correction (only the above-described states being taken into 
account) amounts to -M x Qz/2Ao. The factor 2 in the denominator of the last expression 
is a consequence of two clusters being excited. Combining these results we obtain the 
following expression for the energy (up to the second order) 

E = M(eo + - 1 - -). Q2 

2 2A0 (5.6) 

l%is result is exactly the same as that one would have obtained by expanding the energy 
expression in equation (5.5) to first order in MQ2/AZ and replacing A by Ao. 

It is well known from the configuration-interaction method that in order to obtain the 
proper behavior of the energy with the increasing number of particles one must use in 
the variational approach the function space that contains all the multiple excitations of a 
given type (i.e., the complete active space), which makes a much more complicated trial 
function than the one according to equations (5.1). (5.2). It is therefore obvious that the 
perturbation-theory approach is preferable for large systems. 

6. Results of test ealdations on one-dimensional chains and conclusions. 

To check the applicability of the perturbation theory to the problem under consideration 
we chose the simplest system for which the exact results are known. It is the one 
dimensional chain with nearest neighbours interaction (2.24) only, and with free ends. First, 
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we have numerically calculated the energies and the wavefunctions of the finite chains with 
N = 4,6,8,10. Subsequently we have considered these systems as composed of two- 
sites clusters (dimers) and the perturbation theory equations (3.12). (3.16) were applied up 
to 20th order, showing good convergence. The results for up to 6th order are shown in 
table 2. They show also convergence with increasing number of sites in the chain. In 
the last column the results for an infinite chain are presented. They have been calculated 
analytically up to fourth order. The exact value for the infinite chain is 1 - 21n 2, known 
from the Bethe ansae solution (also presented in the table). These results show that the 
perturbation calculations converge, and that it is necessary to employ higher than the first 
order of perturbation for obtaining accurate results. 

Table 2. Pexhubation theory coneetions to the energy per ste of chains with N sites, their sum, 
and the exact values. 

Order N = 4  N = 6  N = 8  N = 10 47 

0 -0.5000 -0.5000 -0.5000 -0,5000 -0.5000 
1 0.1250 0.1667 0.1075 0.2000. 0.2500 
2 -0.0469 -0.0625 -0.0703 -0.0750 -0.0937 
3 -0.0117 -0.0150 -0.0176 -0.0187 -0.0234 
4 -0.0007 -0.0026 -0.0035 -0,0041 -0.0064 
5 0.OIXW -0.0006 -0.0013 -0.0018 
6 o.ooo4 -0.0002 -0.0000 -0.0011 
Sum -0.4330 -0.4149 -0.4061 -0.4007 -0.3735 
Ewcf -0.4330 -0.4145 -0.4062 -0.4016 -0.3063 

The perturbation calculations of correlation coefficients have also been made for finite 
chains. In table 3 we present the values of the averaged nearest-neighhours correlation 
coefficient 

They have been calculated directly with the help of equations (3.13>-(3.15), without 
employing the energy expression. These results also show convergence, although with 
a somewhat slower rate. 

The calculations for an infinite chain can he simplified if the diagonal part of perturbation 
is included into the unperturbed Hamiltonian by means of the transformation 

m 

e0 --f 2 0  f 1%) (@kl 1%) (@kl 
k=o 

(6.2) 

This transformation is not unitary invariant and therefore will produce different results if 
different sets of functions Q p x  are used for the degenerate unperturbed states. With the 
help of this transformation the perturbation-theory corrections for the energy per site of an 
infinite linear chain are 

m 

1 
8 

w(2) = _- w(1) = 0, 1 w") =,_- 
4' 

(6.3) 
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Table 3. The permrbation-theory cnnections of the avenged nearest neighbours correlation 
coefficient for chains with N sites, their sum, and the exact values. 

order N = 4  N = 6  N = 8  N = 1 0  

0 -0.5000 -0.4000 -0.3571 -0.3333 
1 -0.1250 -0.1500 -0.1607 -0.1667 
2 0.0156 0.0187 0.0201 0.0208 
3 0.0273 0.0250 0.0240 0.0234 
4 0.0090 0.0058 0 . W  0.0036 
5 -0.0014 0.0011 O.wo9 O.ooo8 
6 -0.0025 0.mo 0.0019 0.0019 
SUm -0.5769 -0.4973 -0.4666 -0,4495 
Exact -0.5774 -0.4974 -0.4643 -0.4462 

The sum of these amounts to -0.3875, to be compared with the exact result -0.3863. 
Calculations for the same infinite chain were also performed with larger clusters 

(np = 4,6,8) in the unperturbed state. The transformation (6.2) was used in these 
calcnlations. The results of calculations of the energy per site (and not the corrections, 
as in tables 2 and 3) up to the third order are given in, table 4. These results show the 
stability with increasing number of sites in the cluster. Even in the thud order the energy is 
found to be in gwd agreement with the exact result. At the same time the corrections are 
ahnost independent of the size of the clusters, excluding the minimal size. This is evidence 
that application of perturbation theory, using comparatively small clusters, which can easily 
be calculated numerically, can offer a powerful method of calculating large systems. 

a b l e  4. The energy p” site of the iuhite chain, calculated by the peltumation theory with 
clu~ters of n sites. The emt  value -0.3863. 

order n = 2  n = 4  n = 6  n = 8  

0 -0.2500 -03080 -0.3312 -03437 
1 -0.2500 -03080 -0.3312 -0.3437 
2 -0.3750 -0.3776 - o m 2  -0.3777 
3 -0.3750 -0.3867 -0.3875 -0.3872 

Application of perturbation theory to more complex than onedimensional systems is 
presently in progress. 

It should be noted that in the present approach we have only considered the pure singlet 
spin state of many-electron system. If there are gapless excitations in the system into states 
with larger spin, other states can have the same energy as the singlet state. In such cases the 
singlet state is still an exact state and therefore can be dealt with with the method described 
above. For other states the method needs modifications. 
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